
MJBMB, 2019, 2, 52 - 59 
 

- 52 - 

 

 

PSYCHROTOLERANT BIOSURFACTANT-PRODUCING BACTERIA FOR 

HYDROCARBON DEGRADATION: A MINI REVIEW 
 

Nur Nadhirah Zakaria1, Zakaria Man2, Azham Zulkharnain3 & Siti Aqlima Ahmad1,4* 

 
1Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, 

Selangor, Malaysia 
2Department of Chemical Engineering, Universiti Teknologi Petronas, Bandar Seri Iskandar, 31750 Tronoh, Perak Malaysia 

3Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute Technology, 11 307 

Fukasaku, Minuma-ku, Saitama, 337-8570, Japan 
4National Antarctic Research Centre, B303 Level 3, Block B, IPS Building, Universiti Malaya, 50603 Kuala Lumpur, Malaysia 

 

*Corresponding Author: aqlima@upm.edu.my 

 
 

History  Abstract 

Received: 21st June 2019 

Accepted: 10th September 2019 

 

Biosurfactants are a structurally diverse group of surface-active substances synthesised by 

microorganisms. All biosurfactants have tremendous potential ranging from medicine to 

environmental applications especially in hydrocarbon remediation. Petroleum pollution is a 

major issue in both cold and temperate climate countries. These hydrocarbon pollutants have 

low solubility and high solid-water distribution ratios, thus limiting the interaction between 

microbial cells. Petroleum pollution is a major issue in both cold and temperate climate 

countries. In Antarctica, due to the recalcitrant nature of hydrocarbon components coupled with 

the region’s extremely weather conditions, there were difficulties faced by bioremediation 

approaches. However, using biosurfactant in hydrocarbon bioremediation increases the 

bioavailability of hydrocarbon, thus expediting bioremediation. Few studies have reported on 

psychrotolerant bacterial species that are able to degrade hydrocarbon and produce 

biosurfactants. This review focuses on psychrotolerant bacteria with the potential to synthesise 

biosurfactants and degrade hydrocarbons.  
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INTRODUCTION 

 

In the years ensuing the industrial revolution across the globe, 

many manufacturing industries settled for the use of chemicals 

and chemically-derived materials in the race to increase yield at a 

faster rate with less cost. Chemically derived surfactants have 

been used for more than a century and is in fact one among many 

other materials used by a diverse range of industries worldwide 

[1]. Surfactants are used in industries ranging from food, 

pharmaceuticals, cosmetics, petroleum and water treatment. The 

vast majority of chemical surfactants are derived from 

petrochemicals while some are synthesised from animal fats, 

plants and microorganisms [2, 3]. Many production markets rely 

heavily on petroleum-derived chemical surfactants because 

petroleum is considered a unique source of energy to thousands 

across the world [4]. With that said, the heavy consumption of 

petroleum and the by-products has taken a toll on the 

environment. Thus, in recent times, many have turned to seek for 

a friendlier solution as a greener alternative of the existing 

chemical counterparts.  

 Biosurfactants have been the interest for at least half a 

century and is still being pursued as a topic of interest to this date. 

The omnipresence of biosurfactants and the biologically active 

properties it contains have demanded widespread recognition in 

many applications from medicine [5, 6] to cosmetics [7, 8], gas 

and petroleum industries [9, 10] and contempo environmental 

applications [11-13]. Biosurfactants offer an alternative to 

chemical surfactants due to their biodegradability, low toxicity, 

biocompatibility and digestibility [14]. Those extracted from 

organic compounds such as oil possess dual-properties which are 

hydrophobicity and hydrophilicity [15]. 

 Biosurfactants from extremophiles have captured the 

eye of the global scientific audience). They maintain endurance 

and effectiveness at extreme pH and temperatures [16] making 

them more commercially attainable especially those that can resist 

high temperatures, pressures and pHs [17-19]. Therefore, it is 

imperative to understand the biosurfactants and its characteristics 

with respect to the bacteria and the environment it resides in. This 

knowledge will spearhead research into finding an economically 

realistic and greener approach in mitigating hydrocarbon pollution 

everywhere, even in the cold ecosphere of Earth.  
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 The cold ecospheres have been identified to be the 

largest extreme habitats for microbial communities. These natural 

reservoirs of cold-adapted microorganisms hold promise and 

potential for ecological studies. Here, the habitats are of the 

physical extremes, requiring that these microscopic forms of life 

develop mechanisms of adapting. This is possible only by their 

metabolic flexibility and ability to utilise and adapt to different 

carbon sources [20]. Microorganisms produce active biological 

compounds that act as a method of adapting to the cold [21]. As a 

result of gaining interest and newer technologies, the cryosphere 

has become more accessible to scientific expeditions that have 

shed a light on the potential roles of cold-adapted microorganisms 

in biotechnology, particularly regarding secondary metabolites 

[22, 23].  

 

Properties of biosurfactants 

 

The terms biosurfactant and bioemulsifiers, have been used 

interchangeably along with surface-active compounds in addition 

to biologically active compounds. There are marked differences 

between a biosurfactant and a bioemulsifier. All surface-active 

compounds share mutual properties in the instance where the 

structures have lipophilic and hydrophilic moieties making them 

amphiphilic [3, 24, 25]. The lipophilic moiety has been suggested 

to be a protein or a peptide which has a high number of 

hydrophobic side chains. Structures like these must have 

hydrocarbon chain of a fatty acid with 10-18 carbon atoms 

although more have been reported. The hydrophobic tail usually 

consists of linear alkyl groups or branched tails which makes it 

more difficult to biodegrade. With a hydrophilic headgroup and a 

hydrophobic tail, this creates the basis for the classification of 

biosurfactants into anionic, cationic, non-ionic and zwitterionic 

surfactants [26]. This partitioning also allows the formation of 

spherical micelles in water above the critical micelle 

concentration. While both are surface-active compounds and 

amphiphilic, biosurfactants are classified according to their 

biochemical nature which are glycolipids, 

lipopeptides/lipoproteins or fatty acid/polymer phospholipids and 

saponins [26, 27].   

 Biosurfactants are produced mainly from aerobic 

microorganisms that apply carbon as an energy source [3, 28]. The 

carbon sources can vary, bearing in mind that the type of carbon 

influences the chemical structure of biosurfactants [29, 30]. These 

carbon sources can range from carbohydrates, lipids, oils, to 

hydrocarbons from fuel and mixtures although, the type of carbon 

does have an influence of the chemical structure of biosurfactants 

[30, 31]. Thus, the spectrum of activity depends on the chemical 

composition of the biosurfactants [32].  

 Biosurfactants are amphipathic molecules that partitions 

preferentially at the interface between fluid phases with different 

degrees of polarity such as oil/water or water/oil and air/water 

interfaces [33]. This important character of surface-active 

compounds such as biosurfactant gives it the ability to reduce 

interfacial and surface tension to form microemulsion. This is 

where hydrocarbons can solubilise in water and vice versa [34]. A 

desirable biosurfactant must be efficient in reducing surface 

tension of water and have low critical micelle concentrations [35]. 

A low critical micelle concentration generally means that it has 

the maximum concentration of surfactant monomers in water 

which is subjected to pH, ionic strength and solution [36, 37]. 

Generally, the lower the critical micelle concentration is, the better 

the surfactants to self-associate to form micelles which are needed 

and useful at solubilising hydrophobic compounds.   

 Where surfactants dominate the markets, biosurfactants 

have been steady but not explosive in activity. There are many 

more gaps in knowledge that has yet to be surmised. The 

challenges in optimizing the production of biosurfactants was 

highlighted in a review by Parkinson [38], and was concluded that 

“biosurfactants have been shown to be as effective, if not more so, 

than many conventional synthetic surfactants and their future 

utilisation may depend ultimately upon the prevailing economics 

for their production.” who said that biosurfactants have shown 

more effectiveness than synthetic surfactants however, the 

production of biosurfactants itself depend on the economy of that 

time. In the intervening 34 years thereafter, large number of 

reports has devoted attention to important fundamental matters 

regarding biosurfactants, such as production from different 

microorganisms and molecular basis for biosurfactant sysnthesis. 

Although the chemical and physical properties of some if not all 

biosurfactant classes have been well-investigated, there is still the 

need to characterise the type of biosurfactant in regard to the 

substrate, such as those produced during hydrocarbon degradation 

[39]. Another niche which is also sparse in the field but is gaining 

some due acknowledgement is the molecular details of their 

interactions with biological components [26]. 

 

Biosurfactant from psychrotolerant bacteria 

 

The cryosphere is the frozen part of the Earth and makes up over 

70% of habitats and niches with near- or below- freezing 

temperatures. The cold soils belonging to the Polar Regions or at 

high altitudes are most often than not exposed to environmental 

extremes. This includes low temperature, freeze–thaw cycles, 

strong UV irradiation, and limited availability of liquid water and 

nutrients [21, 40]. In polar soils and sediments, 50% of the 

microbial communities are found to be Gram positive [41, 42]. 

The term psychrophile is not uncommon to scientific reports these 

days due to the increasing number of studies on psychrotrophs 

being conducted. The concept and usage of terms such as 

psychrotolerant, psychrophilic and psychrotrophic posed much 

debate and have contributed to substantial confusion. Morita [43] 

first attempted to classify psychrophiles as the organisms with 

fundamentally minimum growth temperatures of 0°C, optimum at 

15°C, and maximum of 20°C. These microorganisms also thrive 

in the polar regions of the planet, both in the Arctic Circle and the 

Antarctic continent. Bacteria species that are common to 

temperate environments include Pseudomonas, Burkholderia, 

Sphingomonas, Rhodococcus and the Bacillus also prevails in 

these cold habitats [42, 44-46]. 

 Microorganisms inhabiting such extreme places have 

evolved to include highly specialised cell envelopes that contain 

biosurfactants. Being an integral part of the cell structure, 

biosurfactants act in synergy with exopolysaccharides and 

extracellular enzymes to protect the cell against high salinity, 

temperature and osmotic stress [47]. Many of the reported cases 

highlight the production of biosurfactants to be associated with 

extracellular enzymes such as amylase, lipase and protease [48, 

49]. Among the many isolates, Pseudomonas and Rhodococcus 

are the well-known biosurfactant producers [50-52], but such 

capability has been rarely reported for cold-adapted isolates [53-

55].  

In cold environments, biosurfactants with low Krafft 

temperature with respect to the Krafft temperature of the 
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environment are desired to avoid crystallisation of the 

biosurfactants, ultimately denying the surface-active function [56].  

Krafft temperature also called as Krafft point is the minimum 

temperature where micelles are formed, in this case, where a 

surfactant can form micelles. Consequently, psychotolerant 

microorganisms would ultimately be capable of producing 

biosurfactants with low Krafft temperatures [55]. Nature has 

tailored biosurfactants to work under extremes of temperature and 

phase transitions, yet their biotechnological exploitation 

unfortunately remains low. Among the classes of biosurfactants, 

trehalose lipids are the most distinguished microbial 

biosurfactants especially in the genus Rhodococcus that is adapted 

to icy environments [25]. Compared to other sugars, trehalose has 

an extraordinary ability to protect biomolecules and living cells 

which are subjected to freezing. Trehalose displays dual-

cryoprotective action; first, it prevents water form crystallising 

into ice and second, it slows down water dynamics in the 

proximity of proteins thus protecting biomolecules from freezing. 

Mannosylerythritol lipids (MELs) is another type of biosurfactant 

that shows excellent performance in ice-water systems that act as 

an anti-agglomerant. Even though MELs is produced by yeast, 

Moesziomyces antarctica isolated from Wright Alley, Antarctica, 

it promises enormous potential to be exploited in biotechnologies. 

Reports on biosurfactants produced by psychophiles are still 

sparse [21]. Those that have been discovered are shown in Table 

1.  

 
Biosurfactant by cold-adapted bacteria in hydrocarbon 

bioremediation 

 

Bioremediation fully utilises the mechanism of microorganisms to 

remove toxic pollutants from the environments. Temperatures and 

pH are the crucial elements in this field as they are needed by the 

microorganism to grow rapidly, thrive and utilise a vast range of 

carbon sources. Bacteria have always been dominating the studies 

regarding hydrocarbon degradation [62, 63].  Coming from 

Antarctica, the biotechnological potential of isolated 

microorganisms has been recognized, especially regarding 

secondary metabolites produced by bacteria [22, 23].  

The production of biosurfactants occurs predominantly 

on hydrophobic substrates as shown in Table 2 including 

petroleum hydrocarbons [64] since petroleum contaminated 

environments have a higher potential of providing favourable 

conditions for biosurfactants produce [65-67].  

 Biosurfactant producing bacteria have been known to 

originate from both Gram positive and negative [24, 74, 75]. 

These compounds are secreted during the growth of aerobic 

microorganisms [48, 49] and facilitate the transport and 

translocation of insoluble substrates across the cell membranes. 

Biosurfactants have been associated with the bacterial ability to 

grow and degrade hydrocarbon molecules that persist as 

environmental contaminants, which also include polycyclic 

aromatics [48, 49, 76]. Poly-aromatic hydrocarbons (PAHs) are 

structurally stable. Due to this, they are considered as recalcitrant, 

environmental pollutants because of their extreme resistance to 

various methods of bioconversion [77]. In hydrocarbon 

degradation, some PAHs have low water solubility that limits their 

bioavailability to microorganisms (this can be improved by the 

addition of biosurfactants due to their amphipathic structure by 

several folds) [78-80]. Monoaromatic hydrocarbons display higher 

solubility in cold seawater than in temperate, which is contrary to 

diaromatic hydrocarbons that show lower solubility [81, 82]. In 

the environment, most hydrocarbon pollutants are introduced into 

soil through oil spills and forms strong adsorption making their 

effectiveness of removal to be limited, which can be overcome 

using biosurfactants [83, 84]. 

 Biosurfactants are likely to act together with 

extracellular enzymes by increasing solubilisation and 

mobilisation, hence increasing the bioavailability of the 

hydrophobic residues from the hydrolysis of complex biopolymers 

[76]. In cold temperatures, bacterial growth and activity are slow 

in the presence of high concentrations pollutants, recalcitrant 

behaving pollutants. Biosurfactants are added to stimulate the 

bioremediation process [85]. The suitability of biosurfactants to be 

applied in oil-related industries has long been recognised and 

commercially applied [85, 86]. All surface-active compounds 

share mutual properties; their structures have lipophilic and 

hydrophilic moieties making them ampiphilic [3, 24-25]. 

Additionally, the application of biosurfactants in bioremediation 

has further expanded into not just hydrocarbons, but other toxic 

pollutants including heavy metals thus further supporting the 

variable of biosurfactants in bioremediation [87, 88]. 

Bioremediation is just as desirable in extremely cold climates as in 

temperate climates, thus increasing the necessity for biosurfactant 

producing psychrophiles that can degrade toxic pollutants. 

 

Psychrotolerant, biosurfactant-producing hydrocarbon 

degraders isolated from water 

 

Nearly 75% of the Earth’s surface establishes the marine 

environment and is a robust reservoir of diverse microflora of 

biosurfactant producers [80]. Marine microorganisms have 

extraordinary metabolic and physiological capabilities rarely 

found in their terrestrial counterparts [55, 89]. In recent years, 

there have been considerable emphasises on exploiting marine 

organisms to solve the problems of bioremediation of pollutants 

[55, 90]. Large and multidisciplinary research projects (e.g., EU-

FP7 projects, ULIXES and KILL-SPILL) have made successful 

attempts where biosurfactants played major roles. New and 

countless methods including biosurfactants in bioremediation 

were explored and new surfactants were sought from marine 

producers [73].  

 Alcanivoracaceae was the most abundant bacterial 

family with A. borkumensis SK2 strain as the dominant strain. 

This specific strain is very well described in the literature and is 

one of the major players in hydrocarbon degradation in the water 

column being commonly found in enrichment cultures and 

contaminated areas [53, 91, 92]. Members of the 

Rhodobacteraceae, Rhodospirillaceae, Halomonadaceae, 

Oceanospirillaceae, Pseudomonadaceae, and Shewanellaceae 

families have been also reported to be included as soil-degraders 

and biosurfactant producers [59, 93-98]. Alcanivorax, 

Marinobacter, and Cycloclasticus genera are commonly isolated 

from marine hydrocarbon-degrading consortia as they are obligate 

oil-degraders [99]. There are only few reports available on the 

production of biosurfactant by bacterial consortiums isolated from 

hydrocarbon contaminated soil or marine water column [100-102] 

and even fewer that use crude oil as the carbon source at the same 

time.  

 Over the years, the discoveries of new groups of marine 

hydrocarbon-degrading bacteria have highlighted how important 

these microorganisms are in solving bioremediation problems in 

the current marine environment [70, 103-107]. Furthermore, only 

several in the last recent years have had a hand in studying 
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microbial hydrocarbon biodegradation in cold marine environment 

[108-111]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As stated by Yakimov et al. [99], in the marine environment, 

hydrocarbon-degrading bacteria are present at low or undetectable 

levels. When a pollution event occurs, the introduction of these oil 

constituents into the ocean causes successive blooms of limited 

number of these indigenous marine bacteria, also called as 

obligate hydrocarbonoclastic bacteria (OHGB). The exploration of 

marine biosurfactant producers is relatively rare. There have only 

been a few discoveries of cold-adapted marine bacteria that can 

produce biosurfactants [89, 112], which were isolated form 

seawater [54, 69, 113]. Nevertheless, in 2014, several 

biosurfactant-producing bacteria were isolated from oily seawater 

and sediment in the North Atlantic Canada [55]. This makes it 

among the very few literatures that have discovered biosurfactant-

producing bacteria from low temperature locations over the span 

of decades. There are extraordinary metabolic and physiological 

abilities of marine microorganisms that are uncommonly found in 

their terrestrial counterparts [55, 89].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The gap in knowledge to find more marine bacteria that can 

produce biosurfactants is warranted.  

 

CONCLUSION 

 

Biosurfactants are a unique group of surface-active agents, which 

have diverse applications. They offer safer and greener 

alternatives to chemical surfactants but more importantly, they 

play a pivotal role in bioremediation. There is certainly more 

room to discover biosurfactants from psychrotolerant 

hydrocarbon-degrading bacteria not just from terrestrial, but also 

marine origins. Biosurfactants have yet to find a proper hold in 

other industrial niches, but as the global population moves 

towards economical, greener approaches, the key to achieve this 

lies in biosurfactant producing bacteria, capable of tolerating low 

temperatures and degrade a vast range of hydrocarbons and other 

environmental pollutants.  

.    

 

Type of  biosurfactant Location Producing organisms Temperature 

(°C) 

Substrate References 

Glycolipids Soil, Frazier Islands, 

Antarctica 

Pantoea sp. 18-28 Paraffin, kerosene [57] 

Glycolipids Soil, Wilkes Land Rhodococcus fascians 4-15 Kerosene, glucose [44] 

Glycolipids Soil, Haswell Island, 

Antarctica 

Nocardia sp. 

 

20 Paraffin, naphthalene [48] 

Mano-sylerythritol lipids Lake Vanda, Antarctica Moesziomyces antarcticus 30 Vegetable oils [8, 58] 

Fatty acids Seawater, Montemar, Chile Cobetia sp. 

 

30 Dibenzothiophene [59] 

Unidentified Soil, King George Island Bacillus sp., Paenibacillus sp., 

Sporosarcina sp. 

4-32 Tryptic soy broth 

n.d. 

[42] 

Lipopeptides Sand, South Shetlands 

Islands 

Bacillus licheniformis 30 Glucose 

0.15–0.20 g/L 

[46] 

Glycolipoprotein Antarctica Oceanobacillus sp. 27 Sugarcane juice [60] 

Rhamnolipids Marine sediment, Ross Sea Pseudomonas sp. 21 Tryptone + yeast extract [61] 

 

Table 1. Psychrotolerant bacteria species that produce biosurfactants 

Table 2. Potential psychrotolerant, hydrocarbon-degrading, biosurfactant-producing bacteria 

 
Biosurfactant class Location Bacteria species Temperature 

(°C) 

Hydrocarbon source References 

Unidentified 

 

Antarctica soil Arthrobacter protophormiae 10 n-hexadecane 

 

[68] 

Glucose lipids Marine sediment, North Sea Alcanivorax borkumensis 

 

20-30 Hydrocarbons [69, 70] 

Glycolipids  Rhodococcus sp. 4-30 Chloronated-benzene 

and n-alkane 

[71] 

Glycolipoprotein Antarctica Oceanobacillus sp. 30 Lubricant oil, crude oil, 

diesel and kerosene 

[72] 

Unidentified  Alcanivorax, Exiguobacterium, 

Halomonas, Rhodococcus, Bacillus, 

Acinetobacter, Pseudomonas and 

Streptomyces 

30 n-hexadecane, diesel 

 

[55] 

Glycolipids Marine sediment and water 

South Shetlands Islands 

Pseudoalteromonas sp. 

 

25 Tetradecane 

 

[25] 

Rhamnolipids, 

Shoporolipids 

Marine sediment, Aegean 

Sea 

Rhodobacteraceae, 

Rhodospirillaceae, Shewanellaceae, 

Alcanivoracaceae, Halomonadaceae, 

Oceanospirillaceae and 

Pseudomonadaceae families 

14 Crude Oil [73] 
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