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Malaria is a major global health concern, claiming thousands of lives each year. 
Numerous proteins are involved in the parasitic infection of the host body by malaria. 
Several of these proteins, including mucin 13 protein (MUC13), Plasmodium 
falciparum lactate dehydrogenase (PfLDH), plasmodium glutamate dehydrogenase 
(GDH), and liver-derived glutamate dehydrogenase (GDH), have been implicated as 
biomarkers. These proteins interact with other proteins throughout the liver and blood 
stages of the plasmodium life cycle. We used computational analysis to uncover 
protein-protein interactions (PPIs) that might be used to discover new therapeutic 
targets. Bioinformatics analysis utilizing the stringDB webserver was used to gather 
PPIs data. The PPIs data set contains the interaction of biomarkers with many proteins 
as well as the false discovery rate (FDR) for each biological process. Data is provided 
in the form of an interactive graphic and a table of PPIs. MUC13, PfLDH, 
Plasmodium GDH, and LISP2 were co-expressed with several proteins in 12 
biological processes. In the homeostatic process, the interaction of MUC13 with 
MUC4, MUC17, and MUC6 has the lowest FDR value of 0.0299. Furthermore, we 
relate our findings to previous research and predict the implications of these proteins' 
inhibition. 
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INTRODUCTION 
 
Malaria is still a burden in the tropical and subtropical 
regions—caused by coccidian protozoa from genus 
Plasmodium. Five Plasmodium species caused human 
malaria, including Plasmodium falciparum, Plasmodium 

vivax, Plasmodium knowlesi, Plasmodium malariae, and 
Plasmodium ovale. Plasmodium entry to human host during 
bites of female Anopheles sp [1–3]. Because the parasite 
requires a warm environment to thrive, malaria 
transmission occurs optimally between 25 and 31oC [4,5]. 
The primary reported case of malaria come from Africa 
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(93%), South East Asia (3,4%), and the Eastern 
Mediterranean (2,1%) [6]. Indonesia is one of the countries 
in Southeast Asia with a high prevalence rate of malaria 
[7,8]. Indonesia is also home to around 20 anopheline 
malaria vectors, transmitting at least four Plasmodium 
species into the human host [7]. According to the previous 
study, the top three provinces with the highest malaria case 
are Papua, West Papua, and Nusa Tenggara Timur. Various 
species of Plasmodium cause Malaria in Indonesia, but the 
dominant species is P. falciparum. In Eastern Indonesia, 
62% of the case were caused by P. falciparum, and 33% 
were caused by P.vivax [8].   

The malaria parasite has a complex life cycle [9]. 
Following vector injection, the sporozoite enters the liver 
through the circulation. Sporozoite enters the hepatocyte 
through the kupffer cell and develops into two stages: 
trophozoite and schizont [10–12]. The trophozoite stage is 
the main stage of parasitism, during which the parasite 
develops by taking nutrients from host cells through the L-
FABP-UIS3 complex [13]. The schizont stage is the 
proliferation stage, which generates thousands of single 
multinucleated schizont that are ready to invade red blood 
cells-called merozoite. In Plasmodium falciparum, the pre-
erythrocyte stage occurs in 10 Days [14]. For about 6-7 
days, the multinucleated schizont begins to grow into 
merozoites [12]. In the blood-stage, merozoite develops 
into trophozoite and schizont as well. In this stage occur 
gametocyte development. The gametocytes then enter the 
mosquito's body during a blood meal, where they grow into 
the sexual stage. 

An impediment to malaria eradication attempts, 
particularly in Indonesia and Southeast Asia, is the 
evolution of Plasmodium falciparum resistance variants 
resistant to the majority of antimalarial drugs, particularly 
chloroquine and sulfadoxine-pyrimethamine. Additionally, 
some studies suggest that strains of Plasmodium vivax are 
resistant to chloroquine and/or primaquine [15,16]. Since 
the late 1980s, this issue has existed along the Thai border 
and has expanded to other areas of Southeast Asia and even 
Africa [17–19]. The development of drug-resistant 
variations or multidrug-resistant (MDR) strains results in 
treatment failure, which prolongs the patient's recovery 
period and may result in a greater degree of severity [15]. 
Treatment with quinine, mefloquine, and artesunate is used 
in regions with a high MDR ratio, such as Southeast Asia 
[19,20]. These therapies have so far been competing with 
the pace of Plasmodium resistance, making it essential to 
do research on effective new medicines, particularly for 
MDR variants. 

Several proteins are identified as a biomarker of parasite 
development in the human body involved mucin-13 
(MUC13), liver-specific protein 2 (LISP2), Plasmodium 
falciparum lactate dehydrogenase (PfLDH), and 
Plasmodium's glutamate dehydrogenase (GDH) [21–23]. 
These proteins function as biomarkers by interacting with 
other proteins throughout different biological processes. 

Protein-protein interaction (PPI) network analysis is a 
technique for multiple disease molecular assays based on 
mathematical representations that are commonly modeled 
as graphs, with nodes representing proteins and edges 
connecting pairs of interacting proteins that are undirected 
and possibly weighted [24–26]. Several studies use 
computational analysis to understand malaria diseases' 
protein-protein interaction mechanism to develop novel 
drug development, leading to malaria eradication [27–29]. 
The STRING DB is a critical component of this PPI study 
because it is the main protein interaction network database 
that integrates protein interactions from various scientific 
sources with a computational prediction [30]. This research 
provides early information on the protein-protein 
interactions of the anticipated biomarkers. 
 

MATERIALS AND METHODS 
 
Selecting Biomarkers in Malaria Disease 
 
We use protein-protein interaction (PPI) network analysis 
to understand and predict each biomarker's interaction. 
Based on our literature studies, we analyze four biomarkers 
in this study. They are mucin-13 protein (MUC13), liver-
specific protein 2 (LISP2), Plasmodium falciparum lactate 
dehydrogenase (PfLDH), and Plasmodium's glutamate 
dehydrogenase (GDH). 
 
The Protein-Protein Interaction (PPI) Analysis 
 
Each predicted biomarker analyzed using the STRING DB 
v11 (https://string-db.org/) to get their PPI information. The 
minimum required interaction score is set to 0.700, and 10 
shells are the maximum interactors. The data obtained are 
the interactive graphic between proteins on various 
biological processes and the false discovery rate (FDR) 
value for each interaction. 
 

RESULTS 
 
We identified four important proteins that may play a 
critical role in malaria parasite infection based on prior 
research, namely MUC13 (human), LISP2 (Plasmodium), 
GDH (Plasmodium), and PfLDH (Plasmodium falciparum) 
[21,23,31]. The STRING DB was used to evaluate these 
biomarkers since it is frequently used to predict protein-
protein interactions among key biomarkers. 
 
Human Mucin-13 Protein 
 
Several nodes integrated with human mucin-13 protein 
(MUC13) in three biological processes. They are the 
homeostatic process (FDR 0.0299), positive regulation of 
multi-organism process (FDR 1.83e-15), and stimulatory C-
type lectin receptor signaling pathway (FDR 2.50e-22). In 

https://string-db.org/
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the homeostatic process, MUC13 interacts with MUC4, 
MUC17, and MUC6. While in the positive regulation of 
multi-organic processes, MUC13 interacts with MUC4, 
MUC17, MUC6, MUC16, MUC20, MUC12, MUC15, 
MUC3A, and MUC1. The stimulatory C-type lectin 

receptor signaling pathway includes MUC4, MUC17, 
MUC6, MUC16, MUC20, MUC12, MUC15, MUC3A, and 
MUC1. In general, MUC4, MUC6, and MUC17 are 
involved in three terms related to cell signalling (Table 1).

 
Table 1. The PPI network information of MUC13 
 

No Description False Discovery Rate Genes Involved 
1 Homeostatic process 0.0299 (RED) MUC4, MUC17, MUC6 
2 Positive regulation of the multi-organism 

process 
1.83e-15 (BLUE) MUC4, MUC17, MUC6, MUC16, MUC20, 

MUC12, MUC15, MUC3A, MUC1 
3 Stimulatory C-type lectin receptor 

signaling pathway 
2.50e-22 (GREEN) MUC4, MUC17, MUC6, MUC16, MUC20, 

MUC12, MUC15, MUC3A, MUC1 
 

Liver-Specific Protein 2 
 
We found the interaction between the LISP2 gene 
(PKH_030930) with two distinct nodes. These two nodes  
 

 

interacting with PKH_030930 are PKH_120710 (Pf47-like 
protein, putative) and PKH_142580 (6-Cysteine Protein, 
putative).

Table 2. The PPI network information of LISP2 
 

No Description False Discovery Rate Gene Involved 
1 Sexual Stage Antigen s48/45 Domain 2.90e-05 (RED) PKH_120710 
2 Mixed, incl Sexual Stage Antigen s48/45 

Domain, GTP Binding Protein OBG, C-Terminal  
2.49e-06 (BLUE) PKH_120710, PKH_142580 

 

Plasmodium falciparum Lactate Dehydrogenase 
 
We predicted the interaction between PfLDH with several 
nodes. The glycolysis enolase process was marked by red 
color with FDR 1.51e-14. The nitrogen and carbon 
metabolism have FDR value 4.18e-14. In the glycolysis 
process, PfLDH interacts with PF14_0425 (Fructose-
biphosphate aldolase), PF11_0208 (Phosphoglycerate 
mutase), PF10_0155 (Enolase), PF14_0378 (Triphosphate  
 

 

isomerase), PGK (Phosphoglycerate kinase), and GDPH 
(Glyceraldehyde-3-phosphate dehydrogenase). PF14_0425 
(Fructose-biphosphate aldolase), PF11_0208 
(Phosphoglycerate mutase), PF10_0155 (Enolase), 
PF14_0378 (Triphosphate isomerase), PGK 
(Phosphoglycerate Kinase), GDPH (Glyceraldehyde-3-
phosphate dehydrogenase), and PFB0200c (Aspartate 
aminotransferase) integrated with pfLDH in nitrogen and 
carbon metabolism.  

Table 3. PPI network information of PfLDH 
 

No Description False Discovery Rate Genes Involved 
1 Glycolysis, enolase 1.51e-14(RED) PF14_0378, PF10_0155, PGK, GDPH, PF14_0425, 

PF11_0208 
2 Nitrogen and Carbon Metabolism 4.18e-14(YELLOW) PFB0200c, PF10_0155, PF14_0378, PF14_0425, PGK, 

GAPDH, PF11_0208 
 
 

Plasmodium Glutamate Dehydrogenase 
 
The plasmodium GDH (PF14_0164) interacted with several 
nodes in several biological processes. In mixed interaction 
including carbon and nitrogen metabolism (FDR 1.54e-14), 
Plasmodium GDH interacts with PFI1110w (Glutamine 
synthetase, putative), PF08_0132 (Uncharacterized protein; 
Glutamate dehydrogenase, putative), PF14_0334 
(Uncharacterized protein; NAD(P)H-dependent glutamate 
synthase, putative), PFB200c (Aspartate aminotransferase), 

PF10_0218 (Citrate synthase;), PF13_0242 (Isocitrate 
dehydrogenase [NADP];), PEPCK (Phosphoenolpyruvate 
carboxykinase). In Citrate cycle (TCA cycle) and nitrogen 
metabolism, plasmodium GDH interacted with PFI1110w 
(Glutamine synthetase, putative), PF08_0132 
(Uncharacterized protein; Glutamate dehydrogenase, 
putative), PF14_0334 Uncharacterized protein; NAD(P)H-
dependent glutamate synthase, putative), PFB200c 
(Aspartate aminotransferase), PF10_0218 (Citrate 
synthase;), PF13_0242 (Isocitrate dehydrogenase 
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[NADP];). In the biosynthesis of antibiotics and metabolic 
pathway, Plasmodium GDH integrated with PFI1110w 
(Glutamine synthetase, putative),  
PF08_0132(Uncharacterized protein; Glutamate 
dehydrogenase, putative), PF14_0334 Uncharacterized 
protein; NAD(P)H-dependent glutamate synthase, 
putative), PFB200c (Aspartate aminotransferase), 
PF10_0218 (Citrate synthase;), PF13_0242 (Isocitrate 
dehydrogenase [NADP]), PEPCK (Phosphoenolpyruvate 
carboxykinase), PF08_0045(2-oxoglutarate dehydrogenase 
E1 component), PF08_0066 (Uncharacterized protein; 

Lipoamide dehydrogenase,). In Alanine, aspartate, and 
glutamate metabolism pathway, Plasmodium GDH interact 
with PFI1110w (Glutamine synthetase, putative), 
PF08_0132 (Uncharacterized protein; Glutamate 
dehydrogenase, putative), PF14_0334 (Uncharacterized 
protein; NAD(P)H-dependent glutamate synthase, 
putative), PFB200c (Aspartate aminotransferase). PFB200c 
(Aspartate aminotransferase), PFI1110w (Glutamine 
synthetase, putative), and PF08_0132 (Uncharacterized 
protein; Glutamate dehydrogenase, putative) correlated 
with plasmodium GDH in arginine biosynthesis.

 
Table 4. PPI network information of Plasmodium GDH 
 

No Description False Discovery Rate Genes Involved 
1 Carbon and nitrogen metabolism 1.54e-14(RED) PFI1110w, PF08_0132, PF14_0334, 

PFB200c, PF10_0218, PF13_0242, PEPCK 
2 Citrate cycle (TCA) and nitrogen 

metabolism 
1.54e-14(BLUE) PFI1110w, PF08_0132, PF14_0334, 

PFB200c, PF10_0218, PF13_0242 
3 Biosynthesis of antibiotics and 

metabolic pathway 
1.34e-16(GREEN) PFI1110w, PF08_0132, PF14_0334, 

PFB200c, PF10_0218, PF13_0242, PEPCK, 
PF08_0045, PF08_0066 

4 Arginine biosynthesis  5.12e-09(YELLOW) PFB200c, PFI1110w, PF08_0132, 
5 Alanine, aspartate and glutamate 

metabolism 
5.89e-10(PURPLE) PFI1110w, PF08_0132, PF14_0334, PFB200c 
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Figure 1. The protein-protein interaction network of malaria biomarkers generated using STRING DB, The thick dark blue line represents 
the strong interaction and white nodes mean the proteins are not interact in query biological processes. Protein interacts with several nodes 
and colour show the kind of biological processes involved. A) PPI network of MUC13 protein, red nodes represent hemoestatic process, 
blue nodes represent positive regulation of the multi-organism process, and green nodes represent Stimulatory C-type lectin receptor 
signaling pathway.  B) PPI network of LISP2 (PKH_030930), red and blue nodes indicate  Sexual Stage Antigen s48/45 Domain and 
mixed (incl Sexual Stage Antigen s48/45 Domain, GTP Binding Protein OBG, C-Terminal), respectively. C) PPI network of PfLDH, Red 
nodes indicate glycolysis processes, and yellow nodes represent nitrogen/carbon metabolism. D) PPI network of Plasmodium GDH 
(PF14_0164), red nodes indicate carbon and nitrogen metabolism, blue nodes indicate TCA and nitrogen metabolism, green nodes indicate 
biosynthesis of antibiotics and metabolic pathway, yellow nodes indicate arginine biosynthesis, purple nodes indicate alanine/aspartate and 
glutamate metabolism 

 
DISCUSSION 
 
In the present study, malaria biomarkers interact with 
several proteins, possibly being used for novel therapeutic 
targets. These proteins have a role in a different stage in the 
plasmodium life cycle. LISP2 interact with two sexual 
antigen s4/45 domain. MUC13 integrated with other mucin 
proteins that maybe have the same role in supporting 
parasite development in hepatocytes. PfLDH, as a 
metabolic enzyme, interacts with seven proteins related to 
plasmodium metabolism during red blood cell invasion. 
Plasmodium GDH interacts with ten proteins in nitrogen 
and carbon and amino acid metabolism.  

The LISP2 protein has a crucial role in supporting 
merozoite development in the liver stage. This protein is 
localized on the parasitophorous vacuole membrane (PVM)  
and expressed by the Plasmodium sp [32]. The upregulated 
LISP2 gene was found in the trophozoite and schizogony 
stage [31]. The protein on PVM is exported into the 
hepatocyte cytoplasm. Interaction between the parasite and 
the human host involves LIPS2 to support merozoite 
development. The specific function of LISP2 is still 
unknown, but the previous study reported that the deletion 
of LISP2 inhibits merozoite development [32]. The 
existence of LISP2 on hepatocyte cytoplasm can cause 
LISP2 migration into the nucleus and downregulate 
cytokine expression and increase viability during their 
development [31]. LISP2 suppressed de novo protein 
synthesis and causing an increased nutrition flow from the 
host cell to the parasite [13]. We report two protein 
interactions with LISP2, namely PKH_120710 (Expressing 
Pf47-like protein, putative) and PKH_142580 (Expressing 
6-Cysteine Protein, putative). This protein has a role as 
sexual stage antigen s48/45 domain. The s48/45 domain is a 
protein located in a parasite surface in different stages [33]. 
Pfs47 is involved in sexual stage gamet fusion in mosquito 
midgut [34]. 6-Cysteinine protein is also involved as s48/45 
domain. This protein localizes in the parasite membrane or 
interfaces with the host cell [35].  

The mucin-13 protein is highly expressed in the liver's 
mucosal epithelial cell during Plasmodium infection in the 
liver stage [36]. The role of Mucin-13 in malaria 
pathogenesis is still mostly unclear. The mucin-13 protein 
is expressed in normal conditions and has a role as a 
transmembrane protein to protect the cell from infection 

[21]. This study reported several mucin proteins integrated 
with MUC13 in three biological processes in normal 
conditions, including homeostatic process (FDR 0.0299), 
positive regulation of the multi organism process (FDR 
1.83e-15), and stimulatory C-type lectin receptor signaling 
pathway (2.50e-22) (Table 1). When the patient got 
malaria, the mucin-13 exists on PVM primarily identified 
during merozoite development [21]. A study explains that 
the deletion of MUC13 does not affect merozoite 
development. On plasmodium infection, a mucin-13 protein 
is highly suggested that has a function to avoid immune 
cells [21] because this protein surrounds PVM during 
parasite liver stage development. Mucin complex is located 
in hepatocyte epithelial cells. All mucin protein may also be 
surrounding PVM during an invasion. They suggest that 
other mucin proteins involving MUC4, MUC17, MUC6, 
MUC16, MUC20, MUC12, MUC15, MUC3A, MUC1 have 
the same role MUC13. Knockdown of this protein may 
prevent parasite development through enhancing effective 
immune response during liver stage infection. 

Plasmodium consumes sugar from the host cell to 
survive. Plasmodium breaks down the red blood cell in the 
erythrocyte stage, especially the trophozoite stage, causing 
increased glucose consumption up to 100 folds [23]. The 
existence of sugar on the Plasmodium cell can induce the 
glycolysis mechanism. The glycolysis process involves 
several enzymes, including PfLDH. This enzyme has a role 
as a metabolic enzyme that converts pyruvate to lactate in 
Plasmodium falciparum. In the present study, We predict 
that PfLDH enzymes are integrated with several proteins 
involved in glycolysis (FDR 1.51e-14), including 
PF14_0378, PF10_0155, PGK, GDPH, PF14_0425, 
PF11_0208. In another study, several proteins are 
integrated within the plasmodium glycolysis mechanism 
and potential as a drug target in plasmodium glycolysis 
pathway modeling, including hexokinase, Plasmodium's 
fructose 1,6-phosphate aldolase, Plasmodium 
triosephosphate isomerase, and Plasmodium 
Glyceraldehyde-3-phosphate dehydrogenase [37]. This 
enzyme becomes one of the potential biomarkers due to 
high expression in 20-30 hours after infection during the 
erythrocyte stage [23]. When they are going into the 
schizont stage, they stop producing this enzyme [38]. 
Several compounds potentially as PfLDH inhibitors, 
including itraconazole, atorvastatin, and posaconazole [39]. 
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Inhibition of these proteins may prevent plasmodium 
development through inhibition of energy generation. 
PfLDH is also involved in nitrogen and carbon metabolism 
(FDR 4.18e-14) (Table 3). The protein interacts with 
PFB0200c, PF10_0155, PF14_0378, PF14_0425, PGK, 
GAPDH, and PF11_0208. These proteins may be drug 
targets because targeting this protein may inhibit 
metabolism during plasmodium development in the blood 
stage.  

The GDH enzyme was identified as a new biomarker by 
malaria rapid diagnostic test (RDT) [40]. The GDH as a 
biomarker has a different structure from other GDH 
enzymes [23], and there is no GDH enzyme on red blood 
cells. The GDH enzyme involving Krebs cycle on 
Plasmodium sp. We also reported that GDH interacts with 
PFI1110w, PF08_0132, PF14_0334, PFB200c, PF10_0218, 
and PF13_0242 citric cycle process. They use this enzyme 
to get energy using the Krebs cycle; GDH oxidizes 
glutamate into alfa-ketoglutarate and releases NADPH, 
which has the enzyme's role cofactor infection to red blood 
cells [40]. Plasmodium's GDH is considered a potential 
biomarker and drug target of Plasmodium falciparum 
infection [40,41]. The present study predicted ten proteins 
integrated withPlasmodium's GDH in various biological 
processes, including citrate cycle (TCA), metabolic 
pathway, carbon and nitrogen metabolism, etc. (Table 4). 
Three proteins involved in the arginine biosynthesis 
process, including PFB200c, PFI1110w, and PF08_0132 
(Table.4). Arginine is metabolized by Plasmodium and 
requires NO production to reduce red blood cell 
deformability [42]. On the other hand, Plasmodium GDH is 
also related to Alanine, aspartate, and glutamate 
metabolism. In this process, Plasmodium GDH interacts 
with PFI1110w, PF08_0132, PF14_0334, and PFB200c. 
Plasmodium requires amino acid metabolism to support 
parasite development during the invasion, such as 
glycoprotein formation, adenylosuccinate production, and 
critical vitamin production [43]. These proteins are 
considered as a potential drug target to inhibit 
Plasmodium's metabolism during blood-stage infection.  

We found LISP2, Mucin-13 Protein, PfLDH, and 
Plasmodium's GDH are biomarkers in malaria that interact 
with several proteins on many biological processes. This 
study performed protein-protein interaction analysis of 
these malaria biomarkers. Targeting LISP2, Mucin-13 
protein and their interaction partners possibly prevent 
parasite development in the liver stage. It can be used for a 
novel drug target in chemoprevention therapies strategy 
against malaria disease. We also predict targeting PfLDH, 
Plasmodium GDH and their interaction partner as a 
metabolic enzyme in Plasmodium falciparum suggested can 
inhibit energy generation and parasite development during 
blood-stage infection. 
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